On various multi-layer perceptron and radial basis function based artificial neural networks in the process of a hot flow curve description

نویسندگان

چکیده

In recent years, the study of hot deformation behavior various materials is significantly marked by an increasing utilization artificial neural networks, which are frequently employed for a flow curve description. This specific kind description commonly solved via Feed-Forward Multi-Layer Perceptron architecture and rarely Radial Basis architecture. Both network architectures compared to assess their suitability in process under wide range thermomechanical conditions. The performed survey also aimed on eventual corresponding modifications both studied namely Cascade-Forward Generalized Regression network. main results have shown that represents good choice if very high accuracy crucial goal. However, case this architecture, finding proper parameters can be time-consuming hardware burdensome. On contrary, almost unused offers easy training procedure shorter computing time acceptable accuracy. submitted research should then serve as background selection following application suitable solving future tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the use of back propagation and radial basis function neural networks in surface roughness prediction

Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...

متن کامل

Profilometry for the measurement of three-dimensional object shape using radial basis function, and multi-layer perceptron neural networks

Neural networks have been used to carryout calibration process in fringe projection profilometry for the measurement of three-dimensional object shape. The calibration procedure uses several calibration planes whose positions in space are known. Radial basis function based networks and multi-layer perceptron networks are investigated for the phase recovery. Preliminary studies are also presente...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

A New Hybrid model of Multi-layer Perceptron Artificial Neural Network and Genetic Algorithms in Web Design Management Based on CMS

The size and complexity of websites have grown significantly during recent years. In line with this growth, the need to maintain most of the resources has been intensified. Content Management Systems (CMSs) are software that was presented in accordance with increased demands of users. With the advent of Content Management Systems, factors such as: domains, predesigned module’s development, grap...

متن کامل

The Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)

Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of materials research and technology

سال: 2021

ISSN: ['2238-7854', '2214-0697']

DOI: https://doi.org/10.1016/j.jmrt.2021.07.100